

 Navigation

 	
 index

 	sandstorm|plumber stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/plumber/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/plumber/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	sandstorm|plumber stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 Documentation/Guide/source/profiling-custom-code.html

 Navigation

 		
 index

 		sandstorm|plumber stable documentation »

Profiling Custom Code

Adding custom timers

When hunting for performance bottlenecks, it often makes sense to add custom
timers throughout your application. Doing so is quite easy, as the following
example demonstrates:

\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->startTimer('My Timer');
// run some code
\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->stopTimer('My Timer');

If the timer name contains a colon (:), related timers are grouped together in the User Interface:

\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->startTimer('Security: Authentication');
\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->stopTimer('Security: Authentication');

\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->startTimer('Security: Authorization');
\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->stopTimer('Security: Authorization');

Note

It’s not a problem if multiple timers are active at the same time; even the same timer can be active
multiple times at the same time. The following example is perfectly valid:

\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->startTimer('t1');
\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->startTimer('t1');
\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->stopTimer('t1');
\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->stopTimer('t1');

Furthermore, the startTimer allows a second array argument containing additional information
which is shown in the UI.

Setting Options

Furthermore, you can set meta-information on the current run (which is called options currently):

\Sandstorm\PhpProfiler\Profiler::getInstance()->getRun()->setOption('context', 'DEV');

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		sandstorm|plumber stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

Resources/Private/PHP/xhprof-ui/README.html

 Navigation

 		
 index

 		sandstorm|plumber stable documentation »

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

Documentation/Guide/source/typo3-profiling.html

 Navigation

 		
 index

 		sandstorm|plumber stable documentation »

Profiling TYPO3 v4 using Plumber

You can also profile TYPO3 CMS using Plumber. For that, you need to install
https://github.com/sandstorm/typo3v4ext-plumber:

cd typo3conf/ext; git clone https://github.com/sandstorm/typo3v4ext-plumber sandstormmedia_plumber

Furthermore, you need a running TYPO3 Flow installation which is used to show the
profiling data.

After installing the extension in TYPO3 CMS, you need to specify the base path
to the TYPO3 Flow installation inside the extension configuration.

Then, flush your caches and you should see a profiling run appear in Plumber
for every page request in TYPO3 CMS.

 © Copyright .
 Created using Sphinx 1.3.1.

README.html

 Navigation

 		
 index

 		sandstorm|plumber stable documentation »

Plumber - Profiling TYPO3 Flow, Neos and CMS

– Measuring the flow of your application –

Plumber is a profiling and tracing GUI with the following features:

		list all profiling runs in an overview

		show a graphical timeline for a single profiling run

		filter the graphical timeline

		show the xhprof analyzer for a single profiling run

		compare two profiling runs with the timeline

		tag your profiling runs

		show aggregated statistics in the overview

It relies on PhpProfiler for gathering the needed information.

Installation

Warning: Do not install Plumber on production websites. If you do, make sure to disallow access to the profiler URLs.

To install, just use composer:

composer require --dev sandstorm/plumber 2.0.*

The system will automatically install PhpProfiler and use XHProf if it is installed.

Then, add the the following to the global Routes.yaml of your distribution:

-
 name: 'SandstormPlumber'
 uriPattern: 'profiler/<SandstormPlumberSubroutes>'
 subRoutes:
 SandstormPlumberSubroutes:
 package: Sandstorm.Plumber

Configuration

Some settings are available in Plumber and PhpProfiler as well as the TYPO3 CMS
extension, none of which are needed for basic operation. Feel free to investigate
them if you feel like it.

Usage

Just use your web application as normal. To browse profiling reports, go to http://yourhost/profiler/.

For each run, the profiler collects the following data:

		meta-information for the current run (like: the context the request was invoked in, the controller being used)

		timers which can be started and stopped, measuring the details of the application flow.

		the full XHProf profile, containing the (almost) complete call-graph of the run. This is only enabled if XHProf is installed.

Overview Page

[image: Overview]

The overview page is the main entry point to the profiler. It shows the different
profiling runs. For each profiling run, it can display overview information
like the number of created objects or the memory consumption. Each of the
columns of the table is called a dimension.

On top, the bar charts show how the values in a given dimension are distributed,
and allow you to filter the different dimensions to the wanted values.

You can easily create your own dimensions; how to do that is explained later.

Timeline Page

The timeline page gives a visual overview of a request, showing the timers
of the request, and how memory consumption changed.

[image: Timeline]

XHProf Page

You can also drill down to the XHProf page, showing the detailed statistics
of the run.

Configuring Custom Dimensions

The available dimensions are configured inside the Settings.yaml and that’s
also how you can add new dimensions.

Let’s check how the default dimensions work:

Sandstorm:
 Plumber:
 calculations:
 methodCallsOnObject:
 label: 'No. of Method Calls'
 type: regexSum
 regex: '#==>(.*)::.*#'
 totalRuntime:
 label: 'Runtime (ms)'
 type: timerSum
 timerName: 'Profiling Run'
 totalMemory:
 label: 'Memory (kb)'
 type: maxMemory

It defines three dimensions, and gives each of them a label. Each dimension has
a type which specifies how the data inside this dimension is aggregated.

We support the following types:

maxMemory

Parameters: None

Output the maximum memory which has been used in kilobytes.

totalRuntime

Parameters: timerName

This one sums up the total runtime in milliseconds of a timer specified by timerName.

regexSum

Parameters: regex

This is the most versatile counter. It needs XHProf to be installed, else it
does not work.

It counts the number of method invocations in an XHProf trace. To know how the regex
parameter works, we need to check how an XHProf trace is built:

An XHProf trace is a big array with elements like the following:

 'Sandstorm\PhpProfiler\Domain\Model\ProfilingRun::startTimer==>microtime' (76) => array(2)
 'ct' (2) => integer 10
 'wt' (2) => integer 9

This means: “From inside the method startTime in ProfilingRun the function microtime has
been called 10 times. All these calls to microtime together needed 9 milliseconds.”

I’m currently not sure about the time scale, whether it’s micro- or milliseconds...

Now, the regexSum loops over such a trace, and if the regex matches the array key,
it counts the number of calls together.

As an example, let’s demonstrate that with some regexes:

#==>.*__construct# Matches all constructor invocations
#==>.*TextNode::__construct# Matches all constructor invocations of classes which end with TextNode

#.*# Matches all method calls
#.*==>Doctrine\\Common.*::__construct#'
 Matches all object creations inside the Doctrine\Common package

Furthermore, the regex might contain exactly one submatch pattern. In this case, a popover is displayed
with the top 10 invocations grouped by the regex. Example:

#==>(.*)::__construct# Matches all constructor invocations, displaying a Top 10 list of constructor invocations
#==>TYPO3\\Fluid\\(.*)::__construct# Matches constructor invocations in Fluid, displaying a Top 10 list of constructor invocations inside the fluid package

regex

Paramters:

		regex: ‘...’ (see regexSum)

		metric: time|calls|memory

		subtype: sum|average

Your custom type

Custom types are currently not possible.

The calculation happens inside Sandstorm\Plumber\Service\CalculationService,
if you want to extend it. Make sure to submit a pull request then :-).

Profiling Custom Code

The PhpProfiler documentation has instructions on how to profile custom code.

Profiling TYPO3 CMS using Plumber

You can also profile TYPO3 CMS using Plumber. For that, you need to install
https://github.com/sandstorm/typo3v4ext-plumber

cd typo3conf/ext; git clone https://github.com/sandstorm/typo3v4ext-plumber sandstormmedia_plumber

Furthermore, you need a running TYPO3 Flow installation which is used to show the
profiling data with Plumber.

After installing the extension in TYPO3 CMS, you need to specify the base path
to the Flow installation inside the extension configuration.

Then, flush your caches and you should see a profiling run appear in Plumber
for every page request in TYPO3 CMS.

Credits

Developed by Sebastian Kurfürst, Sandstorm Media UG (haftungsbeschränkt). Pull
requests by various authors.

License

All the code is licensed under the GPL license.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

Documentation/Guide/source/usage.html

 Navigation

 		
 index

 		sandstorm|plumber stable documentation »

Usage

Just use your web application as normal. To browse profiling reports, go to http://yourhost/profiler/.

For each run, the profiler collects the following data:

		meta-information for the current run (like: the context the request was invoked in, the controller being used)

		timers which can be started and stopped, measuring the details of the application flow.

		the full XHProf profile, containing the (almost) complete call-graph of the run. This is only enabled
if XHProf is installed.

Overview Page

[image: Documentation/Guide/source/../Images/OverviewPage.jpg]
The overview page is the main entry point to the profiler. It shows the different
profiling runs. For each profiling run, it can display overview information
like the number of created objects or the memory consumption. Each of the
columns of the table is called a dimension.

On top, the bar charts show how the values in a given dimension are distributed,
and allow you to filter the different dimensions to the wanted values.

You can easily create your own dimensions; how to do that is explained later.

Timeline Page

The timeline page gives a visual overview of a request, showing the timers
of the request, and how memory consumption changed.

[image: Documentation/Guide/source/../Images/TimelinePage.png]

XHProf Page

You can also drill down to the XHProf page, showing the detailed statistics
of the run.

Configuring Custom Dimensions

The available dimensions are configured inside the Settings.yaml and that’s
also how you can add new dimensions.

Let’s check how the default dimensions work:

Sandstorm:
 Plumber:
 calculations:
 methodCallsOnObject:
 label: 'No. of Method Calls'
 type: regexSum
 regex: '#==>(.*)::.*#'
 totalRuntime:
 label: 'Runtime (ms)'
 type: timerSum
 timerName: 'Profiling Run'
 totalMemory:
 label: 'Memory (kb)'
 type: maxMemory

It defines three dimensions, and gives each of them a label. Each dimension has
a type which specifies how the data inside this dimension is aggregated.

We support the following types:

maxMemory

Parameters: None

Output the maximum memory which has been used in kilobytes.

totalRuntime

Parameters: timerName

This one sums up the total runtime in milliseconds of a timer specified by timerName.

regexSum

Parameters: regex

This is the most versatile counter. It needs XHProf to be installed, else it
does not work.

It counts the number of method invocations in an XHProf trace. To know how the regex
parameter works, we need to check how an XHProf trace is built:

An XHProf trace is a big array with elements like the following:

'Sandstorm\PhpProfiler\Domain\Model\ProfilingRun::startTimer==>microtime' (76) => array(2)
 'ct' (2) => integer 10
 'wt' (2) => integer 9

This means: “From inside the method startTime in ProfilingRun the function microtime has been called
10 times. All these calls to microtime together needed 9 milliseconds.”

Note

I’m currently not sure about the time scale, whether it’s micro- or milliseconds...

Now, the regexSum loops over such a trace, and if the regex matches the array key,
it counts the number of calls together.

As an example, let’s demonstrate that with some regexes:

#==>.*__construct# Matches all constructor invocations
#==>.*TextNode::__construct# Matches all constructor invocations of classes which end with TextNode

#.*# Matches all method calls
#.*==>Doctrine\\Common.*::__construct#'
 Matches all object creations inside the Doctrine\Common package

Furthermore, the regex might contain exactly one submatch pattern. In this case, a popover is displayed
with the top 10 invocations grouped by the regex. Example:

#==>(.*)::__construct# Matches all constructor invocations, displaying a Top 10 list of constructor invocations
#==>TYPO3\\Fluid\\(.*)::__construct# Matches constructor invocations in Fluid, displaying a Top 10 list of constructor invocations inside the fluid package

Your custom type

Custom types are currently not possible.

Hint

The calculation happens inside Sandstorm\Plumber\Service\CalculationService,
if you want to extend it. Make sure to submit a pull request then :-).

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

Documentation/Guide/source/installation.html

 Navigation

 		
 index

 		sandstorm|plumber stable documentation »

Installation

Warning

Do not install Plumber on production websites. If you do, make sure to disallow access
to the /profiler URL using htaccess or the like.

To install, just require the package in your project:

cd <YourProjectRoot>
composer require sandstorm/plumber *

The system will automatically use XHProf if it is installed.

Now include the Plumber routes in your global routes configuration:

-
 name: 'Plumber'
 uriPattern: 'profiler/<PlumberSubroutes>'
 defaults:
 '@format': 'html'
 subRoutes:
 PlumberSubroutes:
 package: Sandstorm.Plumber

Check the PhpProfiler documentation for information on optional XHProf backends that can be used.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

